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Abstract. A general method is developed for constructing representations ofthe Temperley- 
Lieb algebra, which in turn yield solutions of the Yang-Barter equation. Several classes 
of multiparameter dependent R-matrices are obtained using this method, and the cannec- 
tion of the method with quantum groups is discussed. 

Yang-Baxter equations (YBEE) play important roles in many branches of theoretical 
physics and pure mathematics. It has long been known that they underlie the hasic 
structures of both classical and quantum mechanical integrable systems. Recent research 
has also revealed that they naturally appear in the theory of Lie bi-algebras and Hopf 
algebras as well as knot theory; and this has already led to significant advances in all 
these areas. 

For physical applications, one is mainly interested in concrete solutions of Y B E ~ ;  

thus an important problem in the study of YBES is to explicitly construct and systemati- 
cally characterize, i.e. to classify, their solutions. This classification has been achieved 
for classical YBE solutions associated with simple Lie algebras [ 11 and Lie superalgebras 
[Z]. In the quantum mechanical case, a complete classification of the YBE solutions 
appears to be very difficult, but a large number of classes of solutions are known, some 
of which have been thoroughly studied in statistical mechanics [3], and the recently 
developed techniques of quantum groups [4] and supergroups ([5], see Zachos (1990) 
for a review and a more complete list of references) offer a systematical way to construct 
trigonometric solutions. 

In  this letter we will construct several classes of multiparameter dependent solutions 
of YBE by studying representation of the Temperley-Lieb algebra (TLA) [6]. TLA is a 
unital algebra generated by Ut, i = 1.2 , .  . . , N - 1, subject to the following constraint: 

U:=* ut Q E C  

u,ui = q.u; l i - j l>  1 ( 1 )  
u;u;,, U, = U(. 

Its connection with Y B E  is well known [6,7]. Assume that we have a representation 7 

of TLA such that 

T (  U ; ) = T , = I Q . .  . Q I Q T Q I O . .  .Q1 
L - (2) 

i - 1  N-i-1 
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where I E End(@'") is the identity matrix and TE End(C"OC") will be referred to as 
a T-matrix. Then the matrix R(u) defined by 

sinh( 7 - U )  sinh U 
sinh 7 sinh 7 R ( u )  = +-T (3)  

satisfies the YBE, where 7 is a complex parameter related to Q through 

2 cosh ? =q 
Therefore each representation of TLA of the form (2) yields a solution of YBE, and 
such TLA representations can be constructed using the representation theory of Lie 
algebra, quantum groups [SI and their Z,-graded counterparts [9]. 

We will develop a more general method for constructing T-matrices, and, therefore, 
solutions oT YBE. Several classes of T-matrices are obtained using this method, which 
depend on muitipies o i  iree parameters, and inciude those T-matrices arising trom 
Lie algebra and quantum groups as special cases. 

The structure of the letter is as follows. First we develop the general method and 
then apply it to construct R-matrices; we then discuss the connection of one class of 
the R-matrices obtained with quantum groups and also use them to construct link 
polynomials. We conclude the letter by briefly summarizing the results and also 
mentioning severai issues worih pursuing further. 

Consideramatrix T E  End(CmOCm).  Inorderforittogeneratea~~~representation 
through equation (2), it is necessary and sufficient that T satisfies the following 
equations 

T*=@T 

( I  v 1 ) ( I  W l ) ( l  U 1 ) =  I W  1 

( T O r ) ( r O  T)(TOI) = m r .  
(4) 

I _ -  -~,-- .- - 

In this letter we will study the T-matrices of the special form 
m 

T =  1 g,.,h,,E,,OE, ( 5 )  
,.,",o.P= I 

where E,. E End(@") are the standard matrices such that the element of E,. at the 
position (p ,  U )  is 1 while all the others vanish, and g,,, h,, are the elements of the 
matrices g, h E End(@"). Using the fact that 

E$,, = LE,, 
we can easily show that for the matrix T defined by (3, 

T 2 =  tr(gh)T 

( T O I ) (  IO T)( TO I)  = T O g'hgh' 

( i O T ) (  T @ i ) ( i O T ) =  h'ghg'O T 

where g' and h' are respectively the transposes of g and h. Comparing (4') and (4) we 
immediately see that the necessary and sufficient condition for ( 5 )  to qualify as a 
T-matrix is 

t r (gh)=@fO (&)I= (hg)-'. ( 6 )  
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We say that two matrices g and h form a (g, h)-pair if they satisfy equation (6). Thus 
the task facing us now is to construct as many as possible (g. h)-pairs. But before 
getting to that we examine the gauge symmetries of equations (4), (4') and (6). 

It is obvious that equation (4) retains its form under the transformation 

T'= XOXTX-'OX- '  X E GL( m, C). (7) 

Thus T' will generate a TLA representation if T does. We can regard T and T' as 
equivalent, as the R-matrices associated with them through equation (3) yield the same 
statistical mechanics system. Now for a T-matrix of the form (S), we have 

T' = XOXTX-'OX- '  = 1 (XgX'),,( X~'hX-'),,E,,OE, (8) 

where X-' denotes ( X - ' ) ' =  (XI)-'. Therefore the pairs (g, h )  and (g', h') give rise to 

(9) 

eqc&!e.t T-matrices if they arp r.!.t.d 

(g', h') = (XgX', X-'hX-') 

e.ch ather throfigh 

for some X E GL(m, C). 
An immediate consequence of the above discussion is that we can always assume 

that g e  SL(m, C). Then det h = *l, due to the second equation of (6). Now we consider 
cuncreie suiuiwns UI  cquauurr (01. 

(1) One obvious class of solutions of (6) is obtained by setting h = g-', g E SL(m, C). 
Now 

...~..:.-. .c :.- ,I\ 

JQ=tr(gg-')=m 

and 

depends on m 2 -  1 complex parameters. The corresponding R-matrix reads 

sinh(q - U) sinh U 
sinh q sinh q 

R ( u ) =  +- z g+"(g-')p.?E,mO E",, 2 cosh q = m. 

As is well known, given a self-dual finite-dimensional irreducible g-module V, where 
g is a simple Lie algebra, V O  V contains a trivial g-module V,, and the projection 
operator Po: VQ V +  V, leads to a T-matrix 

T=dim V . P , .  

Such T-matrices belong to the subclass of those given in (10) with g E  SO(m, W). 
(2) The next class of solutions of (6) is obtained by setting h = g-'. Now 

JQ= tr(gg-') 

and we assume that a# 0. The corresponding R-matrix reads 

which also depends on m2-1 complex parameters as gESL(m,C). Note that the 
R-matrices (11) and (12) are not equivalent in general, as it is not always possible to 
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transform (11) to (12) using the gauge symmetry (7). But when g is symmetric, they 
are obviously the same. 

(3) Another class of (g, h)-pairs is obtained by requiring 

It is easy to see that equation (13) is indeed sufficient to ensure (6). Multiparameter 
dependent solutions of (13) can also he easily written down. When m = 2 ,  SO(2, C) is 
Abelian, thus every pair of elements of SO(2,C) solves (13) as long as the trace of 
their product does not vanish. Explicitly, 

sin 'p cos 8 sin 8 
-sin 0 cos 8 -s in9 cos 'p 

) h ( v ) = (  "" ) 

thus we obtain an R ( u )  which depends on two complex parameters 0 and 'p. 

which are of the following form 
In higher dimensions, we consider as an example the SO(m, C )  elements g and h 

e 0  

where eeSO(k ,@) ,  l < k < m ,  l e Z , f ~ S O ( m - k , C ) .  Again they trivially satisfy (13) 
provided that @= tr(e'+')+tr( J) # 0, and the corresponding R-matrix depends on 
f k ( k - l ) + f ( m - k ) ( m - k - l ) + l  complex parameters. 

Now we examine when will the R-matrices associated with the (g, h)-pairs defined 
by (13) he inequivalent. Define 

Hg = {h E SO( m, C)lgh = hg} (14) 

which obviously forms a group. Given any two elements h, h 'E  H,, if there exists an 
X E If, such that 

h = Xh'X-' 

which we denote by h - h', then they give rise to equivalent R-matrices. Note that - 
defines an equivalent relation; thus it makes sense to talk about the coset 

c, = H,/ -. (15) 

A representative of each element in C, together with g constitutes a (8, h)-pair, and 
different elements of C, lead to inequivalent T-matrices. 

(4) Finally we note that given any gESL(m,C)  and a symmetric matrix S E  
GL(m, C), if 

g = sgs (16) 

then the matrix defined by 

h = S-'g-' 
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satisfies equation (16) with g provided that 

v'Q=tr(S-')#O. 

When it is possible to express S as 

S = e D  

the condition (16) says exactly that D and g anticommute, i.e. 

(D,  g }  = Dg+gD = 0. (18) 

Asdet S=*l,trD=ik?r,k~Z.Itisworthpointingoutthatwhen S =  1,(16)istrivially 
satisfied, and we recover the first case studied. 

Let us construct some concrete solutions of (16). In two dimensions, if 

the most general solution of (16) is 

and this in turn leads to 

4 P  
P 9  

@=tr(gh) =-+-=Zccosh TJ. 

The corresponding R-matrix reads 

( 1 9 ~ )  

(sinh(;-u) 0 0 
e" sinh U sinh uJpq 

R ( u ) = -  
sinh TJ pq sinh U e-" sinh U 0 

0 0 sinh( TJ - U )  

Note that whenpq = 1, (19e) agreeswith themodifiedsix-vertex model R-matrix of [lo]. 

S = e D  D=[ ru3 v2u3 , . ,  1 2 k < m  

with 

Next we generalize the above example to higher dimensions. Let 

0 

?k'3 

u p ( 1  0 -1 0 )  O#TJi€C. 
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A solution of (18) is 

0 P ; ‘  

0 P;‘ 
P2 0 

0 

0 \ 

with e an arbitrary element of SL(m - 2k, C). The corresponding h reads 

e-’ 

h = e - ” g - ’ = l 0  0 “ !2 i” , , , 0 

s i ‘  
q k  

where q, = e’mp,, and 
k 

a = t r ( g h ) = 2  1 coshV,+m-Zk. ( 2 0 4  
I = ,  

The (g, h)-pair given by equations (20a-d)  is almost the simplest we can think of; 
however, it covers all the T-matrices arising from self-dual multipliaty-free representa- 
tions of quantum groups as special cases. We will now discuss the connection of the 
last class of (9, h)-pairs with quantum groups in more detail. 

We study the relationship of the T-matrices arising from the fourth class of 
(g,  h)-pairs discussed above with those from self-dual representations of quantum 
groups, then use them to construct link polynomials. 

Recall that a quantum group U&) [4] is a Hopf algebra, generated by { e z , f ; ,  h, I i = 
1,2,. I . , r},  r =rank of the simple Lie algebra g, subject to certain constraints. The 
co-product A: U,(g)+U,(g)OU,(g) is defined by 

A(e,) = e,@ qh’12+ q -h , ’20  x e, 

A(f;) =f ;@qh, ’2+q-h , /20  x f; 

A(h,) = h,O 1 + 10 h,. 

Let .T be an irreducible representation of U,(g) furnished by a module V which is 
finite dimensional and self-dual. Then the tensor product V O  V contains a trivial 
U,(g)-module V,. Let Po: V O  V +  V ,  be the projection operator mapping V O  V onto 
V,, and define [E] 

T =  D,( V)Pu (21) 

a = D , ( V )  

with DJ V )  the q-dimension of  V. Then T satisfies equation (4) with 

and thus qualifies as a T-matrix. 
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Since Po projects V O  V onto a singlet, it can be written in the form 
dim V 

PO= X eWufp,E,,OE,/D,(V).  (22) 
W.",o,P=l 

It is easy to show, using the results of [ll],  that 

T ( ~ ~ ~ * ) / D , (  V )  = t r 2 { [ a ( q 2 h ~ ) O ~ ( q 2 h ~ ) l P O )  (23) 

where tr2 represents the partial trace taken over the second space in the tensor product, 
and h, is an element of the Cartan subalgebra H of U , ( g )  such that A ( h , ) = ( p ,  A ) ,  
VA E H*, with p E H*, being the half-sum of the positive roots of g. It immediately 
follows (23) that 

e7r(qzh0)f= 1 ef= r ( q Z h O )  

i.e. 

f =  T ( q - 2 4 ) e - 1  e =  ~ ( q ~ ~ * ) e n ( q ' ~ ~ ) .  (24) 

In a weight basis, 7 r ( q 2 ' ~ )  can always be written as 

O ] ( 2 5 )  
(P ,   AI)^, 

( f ,  A 2 ) ~ 3  lo O (P.  A i b ~  

4 9  -2ho)  = q2"'ho) T ( h , )  = 

where the his are the positive weights of V, and not necessarily distinct when V is not 
multiplicity free. Therefore, all T-matrices of the form (21) are special cases of those 
arising from the fourth class of (9, h)-pairs discussed earlier. 

It is worth emphasizing that the matrix e, uniquely determined by the quantum 
group structure, is a very special case of the solutions of (24) for a.given ?r(qzh.). It 
involves only one free parameter 9, while more general solutions of (24) can obviously 
contain multiples of free parameters, as demonstrated by the example given by 
equations (20a-d ) .  

Now we turn to the construction of link polynomials using the following T- and 
R-matrices: 

T =I: g,JS- 'g- ' ) ,E , ,OE,  
(26 )  

sinh( q -U) sinh U 
sinh q sinh q 

R ( l I ) =  + r T  

where 

g = sgs S=S' 2 cosh 7 = tr(S-'). 

Define 

R ( u )  
-sinh q 

U =  lim - 
U-+- sinhu 
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Then as a consequence of the Yang-Baxter equation, 

i =  1 , 2 , .  . . , n-1 
(28) 

ui = IQ. . .Q IQ uQ IO. . .Q ! 
i - l  n - i - l  

satisfy the defining relations of the Braid group B., thus afford a representation U of 
B.. It is well known (for a review, see [12]) that if we can define a Markov trace 
+ : u j B N )  + C, a iink poiynomiai i can be obtained by ieiiing 

where e( 0) is the exponent sum of the word 0, and z, i are defined by 

+(U<) = 2 +(U;')= i Vi. (30) 

Therefore our problem is to find a Markov trace + on u(Bn). To do that, we 
the general method developed by Turaev in [13]. Note that 

( S O S ) T =  T ( S O S )  

tr,[(s@s)~]= gFw(s-'g- ' )prEFw tr(sE,) 

= s c gg"s"o(s- 'g- ' )prE*~ 

= s. 
Define + :u (Bn)+C by 

follow 

(31) 

where Tr denotes the trace taken over the n-fold tensor product space. Equations (31) 
and (33) guarantee that +, satisfying the Markov properties, qualifies as a Markov 
trace, with 

I I I - - I \  - 2 " l . r  ... L , - I  z = =e-"s(i z = p ( U c  ) = e  ( L F U S I I  9, . $4) 

In deriving (34), the fact that 

tr(S) = tr(gS-'g-') = t r ( S ' )  = 2 cosh TJ 

has been used. Applying equations (33) and (34) to (29) we obtain the following link 
p o 1 y n o m i a I 

L( 0) = (2 cosh ?)"-I e2vc(s1+( e) e E U@-,) .  (35) 

Since U satisfies the second-order polynomial identity 

- -2 sinh TJ - - 

we see that L ( 8 )  obeys the following Skein relation 

e-iSL(B,u,#2)-ei"L(e,u;ie2) = -2 sinh TJ L(# ,02)  

we,, B,EU(B.) i = 1 , 2  ,..., n-1. 

Also, for the unknotted knot, 8 = ul E u(B2), we have 

L= 1 for the unknotted knot. 
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It follows a theorem of Kauffman [14] that equation (36) uniquely determines a link 
polynomial, which agrees with the Jones polynomial. 

We have presented a method for constructing representations ofthe Temperley-Lieb 
algebra and, thus, solutions of the Yang-Baxter equation. Several classes of TLA 

representations and R-matrices are obtained, which depend on families of free para- 
meters. As we demonstrated, one class of them covers all the TLA representations 
arising from self-dual representations of quantum groups. Using the R-matrices associ- 
ated with this class of TLA representations, we have also obtained the Jones polynomial. 

A question we did not touch upon in this letter is the physical meaning of the free 
parameters in the R-matrices obtained. This can only be answered by explicitly working 
out the corresponding statistical mechanics models, and we plan to do this in the 
future. Another problem is the role played by the free parameters in the deformation 
theory of Lie groups and Lie algebras. Using, for example, the R-matrix associated ... :.I. .I.̂ I" L, -,.:-A..-- L ^.:^^ ,,n, --- ~~- L..:,., ~ r.n. L -  
W l l l l  lllr ,g, ,,,-pa,, 8 , Y r n  "y r ;q"dL ,u"  ,,7,, U U G  Cdll V Y l l U  a q""'LL"L" g,uup rurrowrrrg 
the procedure developed by Faddeev et U /  [IS]. It will be very interesting to see how 
the resultant quantum group is related to the standard U,(s1(2)). Finally, it might be 
possible to classify the solutions of (6) more thoroughly. It is a remarkably simple 
equation; we should be able t o  say something more general about the structure of its 
solutions. 
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